系外行星的检测为发现新的可居住世界的发现打开了大门,并帮助我们了解行星的形成方式。 NASA的目的是寻找类似地球的宜居行星,推出了开普勒太空望远镜及其后续任务K2。观察能力的进步增加了可用于研究的新鲜数据的范围,并且手动处理它们既耗时又困难。机器学习和深度学习技术可以极大地帮助降低人类以经济和公正的方式处理这些系外行星计划的现代工具所产生的大量数据的努力。但是,应注意精确地检测所有系外行星,同时最大程度地减少对非外界星星的错误分类。在本文中,我们利用了两种生成对抗网络的变体,即半监督的生成对抗网络和辅助分类器生成对抗网络,在K2数据中检测传播系外行星。我们发现,这些模型的用法可能有助于用系外行星的恒星分类。我们的两种技术都能够在测试数据上以召回和精度为1.00的光曲线分类。我们的半监督技术有益于解决创建标签数据集的繁琐任务。
translated by 谷歌翻译
We derive a set of causal deep neural networks whose architectures are a consequence of tensor (multilinear) factor analysis. Forward causal questions are addressed with a neural network architecture composed of causal capsules and a tensor transformer. The former estimate a set of latent variables that represent the causal factors, and the latter governs their interaction. Causal capsules and tensor transformers may be implemented using shallow autoencoders, but for a scalable architecture we employ block algebra and derive a deep neural network composed of a hierarchy of autoencoders. An interleaved kernel hierarchy preprocesses the data resulting in a hierarchy of kernel tensor factor models. Inverse causal questions are addressed with a neural network that implements multilinear projection and estimates the causes of effects. As an alternative to aggressive bottleneck dimension reduction or regularized regression that may camouflage an inherently underdetermined inverse problem, we prescribe modeling different aspects of the mechanism of data formation with piecewise tensor models whose multilinear projections are well-defined and produce multiple candidate solutions. Our forward and inverse neural network architectures are suitable for asynchronous parallel computation.
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
Science tests competing theories or models by evaluating the similarity of their predictions against observational experience. Thus, how we measure similarity fundamentally determines what we learn. In machine learning and scientific modeling, similarity metrics are used as objective functions. A classic example being mean squared error, which is the optimal measure of similarity when errors are normally distributed and independent and identically distributed (iid). In many cases, however, the error distribution is neither normal nor iid, so it is left to the scientist to determine an appropriate objective. Here, we review how information theory can guide that selection, then demonstrate the approach with a simple hydrologic model.
translated by 谷歌翻译
Modern statistical learning algorithms are capable of amazing flexibility, but struggle with interpretability. One possible solution is sparsity: making inference such that many of the parameters are estimated as being identically 0, which may be imposed through the use of nonsmooth penalties such as the $\ell_1$ penalty. However, the $\ell_1$ penalty introduces significant bias when high sparsity is desired. In this article, we retain the $\ell_1$ penalty, but define learnable penalty weights $\lambda_p$ endowed with hyperpriors. We start the article by investigating the optimization problem this poses, developing a proximal operator associated with the $\ell_1$ norm. We then study the theoretical properties of this variable-coefficient $\ell_1$ penalty in the context of penalized likelihood. Next, we investigate application of this penalty to Variational Bayes, developing a model we call the Sparse Bayesian Lasso which allows for behavior qualitatively like Lasso regression to be applied to arbitrary variational models. In simulation studies, this gives us the Uncertainty Quantification and low bias properties of simulation-based approaches with an order of magnitude less computation. Finally, we apply our methodology to a Bayesian lagged spatiotemporal regression model of internal displacement that occurred during the Iraqi Civil War of 2013-2017.
translated by 谷歌翻译
可见的红外人员重新识别(REID)旨在认识到RGB和IR摄像机网络中的同一个人。一些深度学习(DL)模型已直接纳入了两种模式,以在联合表示空间中区分人。但是,由于RGB和IR模式之间数据分布的较大域转移,因此这个跨模式的REID问题仍然具有挑战性。 %本文引入了一种新的方法,用于创建中间虚拟域,该域在训练过程中充当两个主要领域(即RGB和IR模式)之间的桥梁。该中间域被视为在测试时间无法获得的特权信息(PI),并允许将此跨模式匹配任务制定为在特权信息(LUPI)下学习的问题。我们设计了一种新方法,以在可见的和红外域之间生成图像,这些方法提供了其他信息,以通过中间域的适应来训练深层REID模型。特别是,通过在训练过程中采用无色和多步三重态损失目标,我们的方法提供了通用的特征表示空间,这些空间对大型可见的红外域移动具有牢固的功能。 %关于挑战性可见红外REID数据集的实验结果表明,我们提出的方法始终提高匹配的准确性,而在测试时没有任何计算开销。该代码可在:\ href {https://github.com/alehdaghi/cross-modal-re-id-iid-via-lupi} {https://github.com/alehdaghi/alehdaghi/cross-modal-re-re-id-i-id--i- id-i--i- id-id-i--i--via-lupi} { Via-Lupi}
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
在二阶不确定的贝叶斯网络中,条件概率仅在分布中已知,即概率上的概率。Delta方法已应用于扩展精确的一阶推理方法,以通过从贝叶斯网络得出的总和产物网络传播均值和方差,从而表征了认知不确定性或模型本身的不确定性。另外,已经证明了Polytrees的二阶信仰传播,但没有针对一般的定向无环形结构。在这项工作中,我们将循环信念传播扩展到二阶贝叶斯网络的设置,从而产生二阶循环信念传播(SOLBP)。对于二阶贝叶斯网络,SOLBP生成了与Sum-Propoduct网络生成的网络一致的推论,同时更加有效且可扩展。
translated by 谷歌翻译
当历史数据受到限制时,与贝叶斯网络节点相关的条件概率不确定,并且可以在经验上进行估计。二阶估计方法为估计概率和量化这些估计的不确定性提供了一个框架。我们将这些案例称为Uncer Tain或二阶贝叶斯网络。当完成此类数据时,即每个实例化都观察到所有可变值,已知有条件的概率是dirichlet分布的。本文通过使他们能够学习参数(即条件概率),通过不完整的数据来学习不确定的贝叶斯网络的当前最新方法。我们广泛评估各种方法,通过各种查询的置信界的所需和经验得出的强度来学习参数的后验。
translated by 谷歌翻译
人们现在将社交媒体网站视为其唯一信息来源,因为它们的受欢迎程度。大多数人通过社交媒体获取新闻。同时,近年来,假新闻在社交媒体平台上成倍增长。几种基于人工智能的解决方案用于检测假新闻,已显示出令人鼓舞的结果。另一方面,这些检测系统缺乏解释功能,即解释为什么他们做出预测的能力。本文在可解释的假新闻检测中突出了当前的艺术状态。我们讨论了当前可解释的假新闻检测模型中的陷阱,并介绍了我们正在进行的有关多模式可解释的假新闻检测模型的研究。
translated by 谷歌翻译